Podstawowe fakty o liczbie π

 Liczba π to jedna z najważniejszych stałych matematycznych w historii naszej cywilizacji. Ile dokładnie wynosi i co właściwie oznacza? Zapoznajmy się z jej historią i teraźniejszością.

Liczba π to jedna z pierwszych rzeczy, jakie przychodzą nam do głowy w sytuacji, kiedy dyskusja schodzi na tematy matematyczne. Jest to w końcu pierwsza taka nietypowa liczba, którą poznają młodzi ludzie w czasie swojej edukacji. Co jest takiego specjalnego w tej liczbie, że tak mocno zapadła nam w pamięć i pełni rolę niemalże celebrytki? Prawda jest taka, że cała nasza cywilizacja jest na niej zbudowana, chociaż jest ona na tyle prosta, by nie było większych problemów ze zrozumieniem jej podstawowych, praktycznych właściwości. Zacznijmy jednak od początku. Tak samo jest z naszymi kasynami proste zasady.

Czym w zasadzie jest liczba π?

Liczba π oznaczana jest pierwszą literą alfabetu greckiego, którą należy odczytywać jako „pi”. Podkreślmy może, że znak π jest całkowicie umowny i został wprowadzony dopiero na początku XVIII wieku jako π właśnie, ponieważ jest to pierwsza litera słowa oznaczającego po grecku obwód.. Nie ma to zresztą większego znaczenia, bo liczba π określana jest jeszcze wieloma innymi nazwami i każda z nich odnosi się to dokładnie tego samego zjawiska. Czym jednak jest ta sławna liczba π?

Można zdefiniować ją jako liczbę równą π = 3,14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 3819 … W rzeczywistości zamiast znaku równości powinniśmy użyć przybliżenia, czyli znaku ≈, bo chociaż zamieściliśmy tutaj dwieście miejsc po przecinku, na końcu liczby cały czas znajdują się trzy kropki. Jest to bowiem liczba niewymierna i nie da się jej po prostu wskazać jako numer. Kolejne miejsca po przecinku moglibyśmy mnożyć do woli i cały czas byłyby nowe. Co więcej, są to liczby niepowtarzalne, nie układające się w żadne wzory. Ułamek 1/3 jesteśmy w stanie zapisać jako 0,(3) i wtedy dokładnie wiemy, ile to jest. w przypadku liczby π nie mamy takiej możliwości. W wielu zastosowaniach profesjonalnych konieczne jest wyliczanie bardzo dokładnej wielkości liczby π, przez co liczy się niepoważne wręcz ilości miejsc po przecinku, ponieważ każde kolejne miejsce pozwala na powiększenie precyzji działania.

Bardziej sensowne zdefiniowanie liczby π to pole koła o promieniu rów

nym jeden, jak również najmniejsza dodatnia wielkość w radianach, dla której funkcja sinus posiada miejsce zerowe. Jak widać z tych opisów, liczba π jest przede wszystkim opisaniem zjawiska geometrycznego, którego istotą jest to, że obwód koła jest zawsze równy dwukrotności jego promienia, jeśli ten promień pomnożymy przez stałą taką samą dla absolutnie wszystkich kół. To stałą jest właśnie π. Mówimy tutaj o słynnym wzorze l = 2 πr, gdzie l to obwód koła, a r to jego promień. Równie istotnym wzorem jest wzór na pole koła, czyli P = πr2, gdzie P jest polem powierzchni koła, a r to ponownie promień koła.

Obliczanie liczby π

Jak wspomnieliśmy wyżej, liczba π to wynalazek sztuczny, który jest jednak odbiciem zjawiska jak najbardziej rzeczywistego, czyli faktu, że stosunek odwodu koła do jego średnicy jest zawsze taki sam. Od kiedy ludzie zaczęli używać kół, stało się to zgoła oczywiste. W dawnych wiekach ludzie oczywiście nie mogli sobie pozwolić na wykonanie pomiarów laserowych, więc musieli radzić sobie inaczej.

Pierwsi liczbę π postanowili określić Babilończycy, ale nie postarali się za bardzo. Jak powiedzielibyśmy to w naszych czasach, wykorzystali metodę π razy oko, dzięki której wyszło im, że π je

st równe 3 i chociaż w sposób oczywisty było to niedokładne wyliczenie, w praktyce im zupełnie wystarczało. Trzeba im jednak przyznać, że już około 18000 roku przed naszą erą ich matematycy postarali się też trochę bardziej i wyliczyli π na 3,125, co jest wynikiem już znacznie lepszym, chociaż oczywiście dalekim od ideału. Byli trochę lepsi od pracujących mniej więcej w tym samym czasie Egipcjan, którym udało się określić wartość π na 3,16. Zdefiniowali ją jako 44/33, co daje mniej więcej 3,1604.

Trzeba zaznaczyć, że ówcześni badacze niespecjalnie byli zainteresowani jakimiś dokładnymi wyliczeniami. Dla nas, ludzi z czasów tworzenia serwisu piderect.pl, kiedy liczy się kasyno online za darmo i rozwinięte technologie dostarczają nam kasyno gry w każdym zakątku świata, bawimy się w powyższe 200 miejsc π po przecinku, ale dla starożytnych specjalistów ważne było tylko to, by na podstawie ich obliczeń dało się wyliczyć ilość materiału potrzebnego do odlania jakiegoś okrągłego elementu czy zrobienia koła. Cała reszta byłą stratą czasu.

Metoda Archimedesa

Po raz pierw

szy na poważnie, w sposób teoretyczny, do wyliczania π zabrał się Archimedes. Ten żyjący w III wieku przed naszą erą filozof stwierdził, że nie ma najmniejszych szans na wskazanie dokładnej wielkości liczby π, więc postanowił nawet nie próbować. Jego założenie było zupełnie inne. Zauważył, że jeśli na obwodzie koła stworzy się wielokąt foremny i będziemy powiększać ilość jego boków, każdy kolejny bok będzie coraz mniej odstawał od koła wpisanego w ten wielobok. Koło zawsze będzie miało obwód mniejszy od tej figury, ale będziemy mieli coraz lepsze górne ograniczenie dokładnej długości obwodu koła. Jeśli z kolei wpiszemy wielokąt foremny o takiej samej ilości boków w koło, będziemy mieli figurę o mniejszym obwodzie od koła, ale z każdym kolejnym bokiem jej obwód będzie coraz bliższy obwodowi koła. W ten sposób uzyskuje się dwa bardzo dokładnie przylegające do obwodu figury, których obwód jest znany. Jeśli naszym wielokątem foremnym będzie kwadrat lub trójką, nie za bardzo będziemy w stanie coś mądrego powiedzieć o obwodzie koła i tym samym o liczbie π. Jeśli jednak wykorzystamy figurę z 96 bokami, będzie już całkiem nieźle. Archimedes próbował wykorzystać figurę mającą 196 boków, ale to mu się nie udało. Ostatecznie dostał zakres wartości π od 3 i 10.71 a 3 i 1/7.

W dzisiejszych czasach wykorzystuje się już trochę inne metody obliczania liczby π, na przykład metody oparte na całkach, ale przez ponad dwa tysiące lat wielu matematyków, w oparciu o prace Archimedesa lub niezależnie od nich, liczyło π na podstawie tych właśnie metod. Do czasów nowożytnych za ich pomocą możliwe było ręczne obliczanie nawet kilkuset miejsc po przecinku, ale nieraz potrzebne na to były długie lata. William Shanks prawidłowo wyliczył 527 miejsc po przecinku, co zajęło mu 15 lat. Łącznie podał 707 miejsc, ale potem się pomylił i kilka lat jego życia przepadło na błędnych obliczeniach.

Nowoczesne metody liczenia są jeszcze bardziej czasochłonne, ale w związku z tym, że liczeniem zajmują się komputery, nikt się tym specjalnie nie przejmuje. W chwili obecnej rekordem wyliczeń jest 13,3 biliona miejsc po przecinku, a dowodem na to, że jest to po prostu kwestia czasu niech będzie fakt, że obliczenia dokonano anonimowo.

Liczba π w kulturze masowej

Liczba π jest dzisiaj elementem kultury masowej. Pojawiają się o niej filmy, istnieją specjalne stowarzyszenia traktujące ją w sposób niemal religijny, a niedawno pewna firma ogłosiła, ze jej hasłem do jednego z portali społecznościowych jest kilka ostatnich liczb z rozszerzenia π. Ich znalazca mógłby się dzięki temu włamać na ich konto. Na dzień pisania tego tekstu jeszcze nikt nie znalazł ostatniej liczby.